
SEcube™
Open Security Platform

Introduction

Release: May 2020



The SEcube™ Open Security Platform
Document Classification: Public

Page 2 of 8
Release: 010



The SEcube™ Open Security Platform
Document Classification: Public

Page 3 of 8
Release: 010

Proprietary Notice

The present document offers information, which is subject to the terms and conditions described
hereinafter.
While care has been taken in preparing this document, some typographical errors, error or omis‐
sions may have occurred. We reserve the right to make changes to the content and information
described herein and to update such information at any time without notice. The opinions ex‐
pressed are in good faith and while every care has been taken in preparing this document, some
typographical errors, error or omissionsmay have occurred. We reserve the right tomake changes
to the content and information described herein or update such information at any time without
notice. The opinion expressed are in good faith and while every care has been taken in preparing
this document.

Authors

Matteo FORNERO (Researcher, CINI Cybersecurity National Lab) fornero.matteo@gmail.com
Nicoló MAUNERO (PhD candidate, Politecnico di Torino) nicolo.maunero@polito.it
Paolo PRINETTO (Director, CINI Cybersecurity National Lab) paolo.prinetto@polito.it
Gianluca ROASCIO (PhD candidate, Politecnico di Torino) gianluca.roascio@polito.it
Antonio VARRIALE (Managing Director, Blu5 Labs Ltd) av@blu5labs.eu

Trademarks

Words and logosmarkedwith ® or™ are registered trademarks or trademarks ownedby Blu5 View
Pte Ltd. Other brands and names mentioned herein may be the trademarks of their respective
owners. No use of these may be made for any purpose whatsoever without the prior written
authorization of the owner company.

Disclaimer

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROVIDED ON AN “AS IS” BASIS
AND ITS AUTHORS DISCLAIM ALL WARRANTIES, EXPRESS, OR IMPLIED, INCLUDING BUT NOT LIM‐
ITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
RIGHTS OR ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR A PURPOSE. THE
SOFTWARE IS PROVIDED TO YOU “AS IS” AND WE MAKE NO EXPRESS OR IMPLIED WARRANTIES
WHATSOEVER WITH RESPECT TO ITS FUNCTIONALITY, OPERABILITY, OR USE, INCLUDING, WITH‐
OUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PURPOSE,
OR INFRINGEMENT.WE EXPRESSLY DISCLAIM ANY LIABILITYWHATSOEVER FOR ANY DIRECT, INDI‐
RECT, CONSEQUENTIAL, INCIDENTAL OR SPECIAL DAMAGES, INCLUDING, WITHOUT LIMITATION,
LOSS REVENUES, LOST PROFITS, LOSSES RESULTING FROM BUSINESS INTERRUPTION OR LOSS OF
DATA, REGARDLESS OF THE FORMOF ACTION OR LEGAL THEREUNDERWHICH THE LIABILITY MAY
BE ASSERTED, EVEN IF ADVISED OF THE POSSIBILITY LIKELIHOOD OF SUCH DAMAGES.

mailto:fornero.matteo@gmail.com
mailto:nicolo.maunero@polito.it
mailto:paolo.prinetto@polito.it
mailto:gianluca.roascio@polito.it
mailto:av@blu5labs.eu


The SEcube™ Open Security Platform
Document Classification: Public

Page 4 of 8
Release: 010



The SEcube™ Open Security Platform
Document Classification: Public

Page 5 of 8
Release: 010

Contents

1 Introduction 6

2 SEcube™ libraries overview and dependencies 6

3 How to setup SEfile™ 6

4 Basic SEfile™ example 7

5 How to use SQLite databases encrypted with SEfile 7



The SEcube™ Open Security Platform
Document Classification: Public

Page 6 of 8
Release: 010

1 Introduction

SEfile™ is a library that you can use, instead of the standard OS calls to the file system, to work on
data stored on non‐volatilememory. SEfile™works as awrapper around the traditional file system
interfaces of Windows and Unix environments, adding a security layer provided by the SEcube™
in order to grant confidentiality, integrity and authentication with AES‐256‐HMAC‐SHA‐256.
Basically, instead of using system calls like read() and write() you can use secure_read()
and secure_write(), that work in a similar manner but provide security properties to your
data. In conclusion, if you want to exploit SEfile™ to improve the security of your data, you need
to write dedicated applications that are able to use the secure virtual file system interface of
SEfile™ instead of the standard file system interface of the OS.

2 SEcube™ libraries overview and dependencies

The libraries for the SEcube™ that are listed on the SEcube™website are interconnected and some
of them cannot work without the others. In particular:

• SEkey™ requires also SEfile™ and the Secure Database.

• SEfile™ can work standalone if you do not plan to use SEkey™ and/or the Secure Database.

• The Secure Database requires SEfile™ to work correctly.

Notice that all these libraries require the APIs of L0 and L1 (SEcube™ host‐side SDK). Be careful
about downloading all the source code you need for your target, here are few examples:

• If you want to use the SEcube™ simply to implement a secure database (an encrypted SQL
database with SQLite), then you must download the Secure Database library and SEfile™ .

• If you want to use the SEcube™ to encrypt generic files, you do not care about key manage‐
ment and you are not interested in the Secure Database, then you simply need to download
the source code of SEfile™ .

• If you need key management features (i.e. because you need to encrypt thousands of files
with SEfile™ and you need to usemany different keys) then youmust download the SEkey™
source code, along with SEfile™ and the Secure Database.

Depending on the source code that you download, please read carefully the documentation pro‐
vided in the ‘getting started‘ guidelines provided with the source code itself.

3 How to setup SEfile™

Inside the folder of the source code of SEfile™ , youwill find files related to SEfile™ itself but also to
the SecureDatabase library. This is due to the fact that the SecureDatabase library is implemented
using a partially customized version of SEfile™ ; however, some of the code is in commonwith the
standard SEfile™ version therefore it has been decided to keep everything inside the same folder
to minimize code duplication.
If you want to use SEfile™ along with SEkey™ , then you do not have to do anything. Instead, if
you do not want to use SEkey™ and you only downloaded SEfile™ (and maybe also the Secure
Database library), you must follow these steps:

1. Open the file named SEfile.cpp and comment the line where the USING_SEKEY con‐
stant is defined. Removing this definition, SEfile™ will skip the code that implies any refer‐
ence to the APIs of SEkey™ (i.e. to check if a key is valid and can be used to encrypt data).



The SEcube™ Open Security Platform
Document Classification: Public

Page 7 of 8
Release: 010

2. Open the file named environment.h and notice the global variable named SEcube. This
is a pointer to the L1 object that is used to communicate with the SEcube™ , this pointer is
setup automatically by SEkey™ and it is used also in few functions of SEfile™ . Since you are
not using SEkey™ , you need to setup this pointer manually. To do so, you simply need to
assign to the SEcube global variable the address of the L1 object that you created in your
main() function (remember to include the environment.h header file). Here is a simple
example:

// this is in your main function
unique_ptr<L1> l1 = make_unique<L1>();
// other code here to login to the SEcube, etc...
SEcube = l1.get(); // you assign the pointer here, before using

any SEfile API

4 Basic SEfile™ example

Let us analyze a simple SEfile™ example. Imagine that we want to work on a text file, in particular
we want to create it, write something to it, read what we wrote and close it. We can use the APIs
of SEfile™ to perform these operations quite easily, remember that we need to work on an object
of the SEfile™ class. Suppose that wewant to encrypt this file using AES‐256‐HMAC‐SHA‐256 with
the key having ID equal to 10 (of course we need a key with that ID stored in the SEcube™ ).

unique_ptr<L1> l1 = make_unique<L1>();
// other code here to login to the SEcube, etc...
SEcube = l1.get(); // see section 3
SEfile myfile(l1.get(), 10, L1Algorithms::Algorithms::

AES_HMACSHA256);
string filename = ''example.txt'';
string content = ''Hello World!'';
myfile.secure_open((char*)filename.c_str(), SEFILE_WRITE,

SEFILE_NEWFILE); // force file creation
myfile.secure_seek(0, &pos, SEFILE_END); // append to the end of

the file
myfile.secure_write((uint8_t*)content.c_str(), content.size());
myfile.secure_seek(0, &pos, SEFILE_BEGIN);
unique_ptr<char[]> filecontent;
uint32_t filedim;
secure_getfilesize((char*)filename.c_str(), &filedim, l1.get());
filecontent = make_unique<char[]>(filedim);
myfile.secure_read((uint8_t*)filecontent.get(), filedim, &

bytesread);
myfile.secure_close();



The SEcube™ Open Security Platform
Document Classification: Public

Page 8 of 8
Release: 010

5 How to use SQLite databases encrypted with SEfile

Inside the folder of SEfile™ , you will notice a file called environment.h. This file contains the
declaration of three global variables, we focus on the variable called databases. This is an array
of pointers to SEfile™ objects, each one is used to handle a file containing a SQL database en‐
crypted with SEfile™ . If you are also using SEkey™ , this vector already contains a pointer, which
points to the SEfile™ object used to manage the encrypted SQL database exploited by SEkey™ to
store its metadata. If your application requires to use another SQLite database encrypted with
SEfile™ , then you must carefully follow these steps:

1. Create a unique_ptr to a SEfile object.

2. Setup the security context you want to use for the database (i.e. set the pointer to the L1
SEcube object, setup also the key ID and the algorithm if you need to create the file of the
database otherwise they will be inherited automatically if the file already exists).

3. Set the name attribute of the handleptr attribute of your SEfile object to the clear‐text
name of the file of your database.

4. Insert the unique_ptr you created into the databases array (use std::move()).

5. Start working with your database using the sqlite3* pointer to the db connection.

Notice that the SEfile™ object will be automatically removed from the vector of databases once
you call the sqlite3_close() API. Here is an example.

unique_ptr<L1> l1 = make_unique<L1>();
/* other code here to login on the SEcube, etc. */
SEcube = l1.get(); // see section 3
sqlite3 *db;
unique_ptr<SEfile> dbfile = make_unique<SEfile>();
uint32_t key_id = 999;
dbfile−>secure_init(l1.get(), key_id, L1Algorithms::Algorithms::

AES_HMACSHA256);
char dbname[] = `test`;
memcpy(dbfile−>handleptr−>name, dbname, strlen(dbname));
databases.push_back(std::move(dbfile));
sqlite3_open(dbname, &db);
/* other code here to work on the database */
sqlite3_close(db);

Notice that you should not use directly the APIs of SEfile™ specific for the SQLite database engine.
Those APIs are automatically called by SQLite itself, the only APIs of SEfile™ related to SQLite that
you may consider are the securedb_ls(), the securedb_recrypt(), and the
securedb_get_secure_context().


	Introduction
	SEcube™ libraries overview and dependencies
	How to setup SEfile™ 
	Basic SEfile™ example
	How to use SQLite databases encrypted with SEfile

